

### **PROGRAMME AND ABSTRACTS**

32nd annual meeting of the European Bone and Joint Infection Society





# **EBJIS 2013**

12-14 September 2013

Prague, Czech Republic

Venue:

U HÁJKŮ Congress Center





www.ebjis2013.org



### **EBJIS 2013**

**12-14 September 2013** Prague, Czech Republic

32<sup>nd</sup> annual meeting of the European Bone and Joint Infection Society







## CARLO ROMANÓ

Name

Abstract no:

118

... has been granted the

## EBJIS Award

for

## Very promising research

at the 32nd Annual Meeting of the Bone and Joint Infection Society, 12-14 September 2013 in Prague, Czech Republic.

#### 118

### PREVENTION OF IMPLANT-RELATED INFECTIONS USING A RESORBABLE ANTIBACTERIAL HYDROGEL COATING: IN VITRO AND IN VIVO STUDY

Carlo Luca Romanò¹, Lorezo Drago¹, Maria Haensch², Lieve Van Mellaert ³, Jose Stuyck³, Kostantinos Malizos⁴, Milena Fini⁵, Enzo Meani⁶.

<sup>1</sup>Istituto Ortopedico Irccs Galeazzi; (Milano, Italy); <sup>2</sup>Universitaets Klinikum; (Heidelberg, Germany); <sup>3</sup>Katholieke Universiteit; (Leuven, Belgium); <sup>4</sup>Institute For Research And Technology Thessaly – Cereteth; (Larissa, Greece); <sup>5</sup>Istituto Ortopedico Irccs Rizzoli; (Bologna, Italy); <sup>6</sup>Istituto Ortopedico G. Pini; (Milano, Italy).

Aim: Implant-related infection are among the main reasons for failure of joint prosthesis with high associated social and economical costs. Here we report the results of a study performed under the European 7th Framework Programme\*, concerning the efficacy in reducing bacterial colonization of an implant through a fully resorbable hydrogel antibacterial coating\*\*. The patented tested hydrogel, a co-polimer comprising hyaluronic acid and poly-lactic acid, can be mixed just before its use with various antibacterial agents.

**Methods:** In vitro studies where conducted using DAC® coating on different biomaterials, including titanium, chrome-cobalt and polyethylene discs. In vivo studies where performed on 35 rabbits divided in 7 groups. Animals where implanted with an intramedullary titanium rod in their femur, with a known inoculum of methicillin-resistant Staph. aureus. 2% and 5% vancomycin-loaded coating\*\* was used and compared to controls.

**Results:** In vitro studies showed the ability of the hydrogel to be loaded and to sustain release for up to 96 hours of the following antibacterial/antibiofilm compounds: vancomycin, ciprofloxacin, meropenem, gentamycin, amikacin, tobramycin, clindamycin, doxycyclin, linezolid, NAsalycilate, N-acetylcisteine. In vivo studies showed a bacterial load reduction ranging from 94% to 99.9% using vancomycin-loaded coating\*\*, compared to controls.

**Conclusions:** Coating\*\*, a fast-resorbable antibacterial carrier, showed the ability to be loaded with various antibacterial compounds and a highly significant reduction of bacterial colonization of implanted biomaterials in an animal model, opening a new pathway to local prevention and treatment of biofilm-/implant-related infections.

<sup>\*(</sup>iDAC, collaborative research project # 277988)

<sup>\*\*(</sup>DAC®, Novagenit, Italy)